Dallas Semiconductor

Tagging Guidelines for
1-Wire Sensors and Instruments

Revision 1.00
September 1, 1999

by David Smiczek

Copyright © 1997,1998, 1999 Dallas Semiconductor Inc.
All Rights Reserved

1/28

Table of Contents

Dallas Semiconductor

Table of Contents 2
Abstract 4
1-Wire TAG Specification 4
Basic TAG 5
Overview 5
Structure 5
Figure 1. Basic 1-Wire TAG field map 5
Table 1. Defined Part ID's (Byte 0 - 3 in Basic 1-Wire TAG) 5
Descriptor TAG 7
Overview 7
Table 2. Summary of group objects for Descriptor TAG. 7
Table 3. Summary of data objects for Descriptor TAG. 8
Figure 2. Sample Descriptor TAG 8

Table 4. Summary of Access Methods for 1-Wire Sensors, 1-Wire Actuators, and 1-Wire
Branches. 9
Figure 3. Sample Descriptor TAG for 1-Wire Weather Station 10
Group Objects 12
ParseData 12
OWCluster 13
OWABranch 14
OWSensor 15
OWActuator 16
Data Objects 17
Description 17
OWNetAddress 17
Manufacturer 17
ManufacturerCode 18
Enum 18
SecondsSince1970 18
AccessMethod 19
ChannelMask 19
ChannelState 19
ScaleFactorM 20
ScaleFactorD 20
UnitName 20
ClusterNum 21
ClusterRev 21
InitState 21
NetRegistration 22
Access Methods 23
AM_ORDER_ROM_SWITCH_LIST 23
AM_TEMPERATURE_1820 23
AM_TEMPERATURE_18B20 23
AM_COUNT_VELOCITY_2423 24
AM_COUNT_TOTAL_2423 24
AM_SWITCH_2406 25
AM_LEVEL_2406 26
AM_ACTIVITY_2406 26
AM_SWITCH_2409 27

2/28

Dallas Semiconductor

AM_LEVEL_2409 28
AM_ACTIVITY_2409 28

3/28

Dallas Semiconductor

Abstract

Each 1-Wire device that Dallas Semiconductor builds is assigned a 64 bit 1-Wire Network
Address number. The number is laser engraved into the read-only memory of the device. Dallas
Semiconductor manages this number pool of 10"° codes so that each device has a unique
number.

Once these 1-Wire devices leave Dallas Semiconductor, they go to a service provider. A service
provider usually associates these 1-Wire Network Address numbers with a physical object. The
association of the number to the physical object is often placed in some kind of database. With
the introduction of more complex 1-Wire devices that can perform sophisticated sensing and
reading operations, this task becomes more critical. This is further complicated by the desire to
group 1-Wire devices and sensors together into a cluster to perform a group function.

To easily describe these associations and operations, the following document will present a 1-
Wire TAG format. This 1-Wire TAG can reside in a traditional database or it can even be placed
in the memory of a 1-Wire device. By carrying the 1-Wire TAG with the sensor cluster, it can be
self-configuring when presented to a new master application. If it is impractical or not desired to
keep the 1-Wire TAG with the cluster, it can also reside on a home Internet site. The master
application can then take one of the unique 1-Wire Network Address numbers found on the 1-
Wire to request the appropriate 1-Wire TAG from the hosting site.

Dallas Semiconductor plans on maintaining the standard for the 1-Wire TAG and making it
accessible at ‘www.1-Wire.net'. There are also plans under way to provide hosting services for
the 1-Wire TAG data on the same site.

While Dallas Semiconductor is promoting this format, the content and version control of the 1-
Wire TAGs will be under the authority of the 1-Wire service provider.

1-Wire TAG Specification

The 1-Wire TAG file specification as defined here can reside in a file on the 1-Wire sensor itself
(physical) or in another file system such as on the master (local) or in a database on a server
(remote). When the file is located in the memory of a 1-Wire device in the 1-Wire Cluster
(physical) it must be in the form of an Extended File Structure file. The file can reside in any
normal memory 1-Wire device such as the DS1993, DS2406, or DS2433. The Extended File
Structure is the format used by the TMEX software drivers. The specification for the Extended
File Structure can be found in the Dallas Semiconductor Application Note 114, "TMEX Extended
File Structure Revision 3.10".

The contents of the 1-Wire TAG file can have two different formats. The first type is the Basic
format and contains a predefined format with fields describing the manufacture and sensor type.
The Basic type of 1-Wire TAG format provides self registering capabilities to known sensor types
and configurations. The second type is the Descriptor and contains the description in the Object-
Based Messaging format. Object-Based Messaging was developed by Dallas Semiconductor for
network administration of 1-Wire enabled controllers. It also works well as a general purpose and
flexible tagging language. The specification for Object-Based Messaging or (OBM) can be
obtained from Dallas Semiconductor. The Descriptor type 1-Wire TAG provides self-registering
capabilities to even unknown configurations of sensor clusters.

Whenever a memory 1-Wire device is found by a 1-Wire TAG compatible application it is

examined to see if it has a Basic tag file TAGB.000 or a Descriptor tag file TABD.000. The
contents are then parsed to obtain the available sensor characteristics.

4/28

Dallas Semiconductor

Basic TAG

Overview

The Basic 1-Wire TAG contains twenty-eight bytes of predefined fields in the Extended File
Structure file TAGB.000. Note that since the data is only twenty-eight bytes, the entire contents
fits in one standard page of a memory 1-Wire device. There are seven fields defined. The first
two fields are four bytes each and the next five fields begin with a ASCIl $. See Figure 1 for a
general field map for the Basic tag file. With the exception of the Binary Serialization field, all
codes are in ASCII text.

Structure

Figure 1. Basic 1-Wire TAG field map

Byte 0 -3 Byte 4 -7

ppPpp SSSS

Part ID Binary serialization

(4 bytes) (4 bytes)

Byte 8 - 12 Byte 13 - 16 Byte 17 - 19 Byte 20 - 22 Byte 23 - 27
$mmmm $fff $ii $rr $dddd
Manufacturer Module function | Interface type | Hardware Date code
code (5 bytes) code (4 bytes) (3 bytes) revision (3 bytes) | (5 bytes)

Table 1 lists the currently defined Part ID's (bytes 0 to 3). The Part ID will inform the host as to
the function of the attached sensor.

Table 1. Defined Part ID's (Byte 0 - 3 in Basic 1-Wire TAG)

Part ID Description

VOLT Voltage Probe

COND Conductivity Probe

PHPH PH probe

PRES Pressure Probe

SCAL Weigh Scale

FORC Load-cell and strain-gage Probe

SKEY Security KEY (keys can also exist in the
serialization field of any DS2407 in the net)

GDIS GAP LED display panel

7DIS 7(9) Segment Display

CNTR Rain gage

DSWS Dallas Semiconductor Weather station

The Binary serialization (bytes 4 to 7) is a four byte least-significant byte first binary number. It
represents the device number of type Port ID.

The Manufacture code (bytes 8 to 12) represent the manufacturer of the sensor. A manufacture
code beginning with '#' indicates a FCC Grantee Code.

5/28

Dallas Semiconductor

The Modular function type specifies the type of module. A module function type of 'ASS' indicates
that this module is associated with another module to form a complete sensor. Spaces (hex 20)
indicate that this module is not associated with another module.

The Interface type indicate that type of interface that this sensor employs.

The Hardware revision is a two character hexadecimal ASCII value that indicates the hardware
revision of the sensor. The value $00 is the first revision up to $FF giving a total of 255 possible
revisions.

The Date code (bytes 23 to 27) indicate the date the sensor was tagged. The data code is a
simple four digit ASCI code where the first two digits indicate the year and the last two indicate
the week number (1 to 52). If the year is greater than or equal to 70 the century is 1900 and
if it is less than 70 the century is 2000. For example, a year code of '02' indicates 2002 and

a year code of '98" indicates 1998.

If any of the ASCII fields are not used, place spaces (hex 20) in the field contents. For example a
non-used Interface type field would be '$(space)(space)’. If a Part ID or other field type is not
defined by this specification and is required, please register this type with Dallas Semiconductor
by emailing to iButton.Supportl@dalsemi.com.

Any data supplied in addition to the Basic or Descriptor 1-Wire TAG files, such as in another file,
or outside of the file structure is vendor specific and considered outside of this specification. Note
that the Descriptor type file provides a richer avenue for supplying additional information. Both 1-
Wire TAG files may be provided in the same memory 1-Wire device to meet the needs of all
hosts.

6/28

Dallas Semiconductor

Descriptor TAG

Overview

The Descriptor 1-Wire TAG file (TAGD.000) contains data in the OBM (Object Based Messaging)
format. Please refer the to the OBM (Object Based Messaging) documentation from Dallas
Semiconductor to get a detailed format description. In brief, OBM consists of ‘Group’ and ‘Data’
objects. These objects are in a format that can be easily parsed. ‘Group’ objects perform an
action and ‘Data’ objects read or set the contents of a memory block (Message Information Block
or MIB). The action performed due to a ‘Group’ object can be performed at the beginning of the
object, at the end, or both. With this flexible format, a sensor reading application can read and
interpret previously unknown sensor cluster architectures.

Table 2 lists the group objects that are defined for this specification. Each of the group objects
have required and optional data objects. If the group is a (PRE) or (PRE and POST) execute type
object then the data objects must be before the beginning of the group. If the group object is a
POST execute type object then the data objects must be after the beginning and before the end of
the group object. This ordering of the objects allows the 1-Wire cluster of sensor to be read while

the 1-Wire TAG is being parsed. An application could even use the 1-Wire TAG as a pseudo-

script.

Table 2. Summary of group objects for Descriptor TAG.

Group Description Required Data | Optional Data Pre/
Object Objects Objects Post
ParseData Group designating OBM none All POST
parse-able data
OWCluster Logical grouping of 1-Wire | ClusterNum Description PRE
devices ClusterRev Manufacturer POST
ManufacturerCode
Enum
SecondsSincel1970
NetRegistration
OWBranch 1-Wire branch device for OWNetAddress | Description PRE
complex topologies AccessMethod POST
ChannelMask
ChannelState
OWSensor 1-Wire sensor, can be OWNetAddress | Description POST
read AccessMethod ScaleFactorM
ChannelMask* ScaleFactorD
ChannelState* UnitName
InitState*
OWActuator | 1-Wire actuator, can be set | OWNetAddress | Description POST
to control something AccessMethod
ChannelMask*
ChannelState*
InitState*

* Not required for all AccessMethods. See the description of the AccessMethods for details.

7/28

Dallas Semiconductor

Table 3 lists the data objects that are defined for this specification. These objects are used to set
memory locations in the Memory Information Block (MIB). Group objects use the data locations in

the MIB when performing actions.

Table 3. Summary of data objects for Descriptor TAG.

Group Object Description Type Max size
(bytes)
Description General description String 255
OWNetAddress 1-Wire Network node address Binary Array 8
Manufacturer Manufacturer Name String 255
ManufacturerCode | Manufacturer Code Binary Array 8
Enum General Enumeration Integer 4
SecondsSincel970 | Time/date stamp expressed as | Integer 4
seconds since January 1, 1970
AccessMethod Access method to read/set 1- Integer 4
Wire sensor
ChannelMask Channel mask for sensors with | Integer 4
multiple channels
ChannelState Desired channel state Integer 4
ScaleFactorM Multiplication scaling factor Integer 4
ScaleFactorD Division scaling factor Integer 4
UnitName General unit name String 255
ClusterNum 1-Wire Cluster unigue number Binary Array 255
ClusterRev 1-Wire Cluster revision number | Integer 4
InitState Initialization state for 1-Wire Binary Array 255
Sensor
NetRegistration WWW network address for String 255
remote data services

By convention, when printing the OBM based tag in human-readable form, a ‘Group’ group is
designated by pre-pending a ‘G:’ and a ‘Data’ object by a ‘D:’. Figure 2 displays a minimal 1-
Wire TAG describing a 1-Wire cluster with only one device.

Figure 2. Sample Descriptor TAG

RAW TAG (si ze 35)

C2 CF 01 07 04 22 6B 8B 10 02 17 01 00 80 2D 80
2B 34 01 08 10 8B 6B 22 00 00 00 FF 02 16 01 01
FF FF FF

{G ParseDat a}[
{D: ClusterNum(4)} 22 6B 8B 10
{D: ClusterRev(1)} O
{G OWuster}[
{G OWsensor}|
{D: OANet Addr ess(8)} FF000000226B8B10
{D: AccessMethod(1)} 1

The 1-Wire TAG in Figure 2 is display in raw byte form and also translated into a human-readable
form. The entire TAG is in OBM format and is encapsulated in a group called ‘ParseData’. The
‘ParseData’ group instructs the reader of this file that it is indeed OBM parse-able information.
The ‘ParseData’ group is required on all OBM type packets including Descriptor TAGs. The

8/28

Dallas Semiconductor

content of the ‘ParseData’ group is the description of sensors. The 1-Wire sensors are contained
in the ‘OWCluster’ group. The required data objects ‘ClusterNum’ and ‘ClusterRev’ are before the
beginning of the ‘OWCluster’ group since it is a PRE and POST execute type group. Note that the
groups have brackets and indentation to indicate the beginning and end of the group. Also note
that the data objects have a length in bytes displayed in parentheses. The only sensor in the
cluster is a device uniquely identified by the ‘OWNetAddress’ data object. The method to read it is
specified in the ‘AccessMethod’ data object. See a complete description of AccessMethod's later
in this document.

Table 4. Summary of Access Methods for 1-Wire Sensors, 1-Wire Actuators, and 1-
Wire Branches.

Access Method Description Number

AM_ORDER_ROM_SWITCH_LIST | Order list of switches where closure is 0
detected by the presense of a specified
1-Wire device

AM_TEMPERATURE_1820 Temperature read in DS1820/DS1920 1
format

AM TEMPERATURE 18B20 Temperature read in DS18B20 format 2

AM_COUNT_VELOCITY_2423 Velocity calculation using 1-Wire 3
counter DS2423

AM COUNT TOTAL 2423 Count using 1-Wire counter DS2423 4

AM_SWITCH_2406 Low side switch using DS2406 (or 5
DS2407)

AM_LEVEL_ 2406 Level sensor (HIGH/LOW) using 6
DS2406

AM_ACTIVITY 2406 Activity sensor using DS2406 7

AM SWITCH 2409 High side switch using DS2409 8

AM_LEVEL_ 2409 Level sensor (HIGH/LOW) using 9
DS2409

AM_ACTIVITY 2409 Activity sensor using DS2409 10

AM VOLTAGE 2450 Voltage reading using DS2450 11

9/28

Dallas Semiconductor

Figure 3. Sample Descriptor TAG for 1-Wire Weather Station
RAW TAG (si ze 300)

{G ParseDat a}[

{D: Description(22)} 1-Wre Wather Station
{D: ClusterNum(4)} 06 BE 69 12
{D: ClusterRev(1)} O
{D: Manufacturer(20)} Dallas Seni conduct or
{D: Manuf act urerCode(4)} 00 00 00 00
{D: Enum(1)} 20
{D: SecondsSi ncel970(4)} 936029523
{G OWuster}[
{D: Description(16)} Isolation Branch
{D: OWNet Address(8)} 3000000006BE6912
{D: Channel Mask(1)} 2
{D: Channel State(1)}
{D: AccessMethod(1)}
{G OWBranch}|

{G OWsensor}|
{D: Description(14)} Wnd Direction
{D: AccessMethod(1)} O
{D: InitState(64)}
1 D4 57

]

]

{G OWsensor}|
{D: Description(9)} Enclosure
{D: OANet Addr ess(8)} CEO000000158E7C10
{D: AccessMethod(1)} 1

]
{G OWsensor}|
{D: Description(10)} Wnd Speed
{D: OWNet Addr ess(8)} B20000000033CF1D

10/28

Dallas Semiconductor

A A e
00000

Uni t Name(3)} MPH

Scal eFactorM 2)} 12265
Scal eFactorD(2)} 10000
InitState(1)} OF
AccessMet hod(1)} 3

11/28

Dallas Semiconductor

Group Objects

ParseData

The ‘ParseData’ group indicates that the enclosed data is OBM parse-able. This is required on all
OBM packets and prevents inadvertent parsing of non-OBM data.

Execution Mode:
POST - no required objects

Required Data objects:
none

Optional Data objects:
all

Example:
{G ParseDat a}[

(OBM format data here)

12/28

Dallas Semiconductor

OWCluster

The ‘OWCluster’ provides a logical grouping of separate 1-Wire sensors. The example of this is
the 1-Wire Weather Station. The standard weather station contains three different sensors
employing eleven 1-Wire devices.

Execution Mode:

PRE / POST — The OWCluster action is performed at the beginning and end of the group
during parsing. The data objects must be before the beginning of the group.

Required Data objects:

ClusterNum — Provide a unique identifying number. It is recommended that this number be
generated by selecting one of the 1-Wire Net devices in the cluster and extracting the
unique portion. The ClusterNum is used by the reading application to uniquely identify the
cluster.

ClusterRev — Provide a unique revision number. Each time the 1-Wire TAG cluster is
updated, this revision number should be increased. This number is used by the reading
application to select the correct version if more then one cluster has the same
ClusterNum.

Optional Data objects:

Description — Text description of the 1-Wire cluster.

Manufacturer — Text name of manufacturer.

ManufacturerCode — Binary array representing manufacturer information. The format for this
has yet to be defined.

Enum — Integer representing an enumeration of the 1-Wire Cluster’s of this type. This can be
thought of a manufacturer’s serialization number. No two cluster’s of the same type
should have the same enumeration number.

SecondsSincel970 — Time / Date stamp of the creation of this cluster. This is represented as
an integer count of seconds from January 1, 1970.

NetRegistration — This provides the World-Wide-Web address where the result of reading this
cluster can be posted. This site can then provide advanced data services.

Example:
{D: Description(22)} 1-Wre Wather Station
{D: ClusterNum(4)} 06 BE 69 12
{D: ClusterRev(1)} O
{D: Manufacturer(20)} Dallas Seni conduct or
{D: Manuf acturerCode(4)} 00 00 00 00
{D: Enum(1)} 20
{D: SecondsSi ncel970(4)} 936029523
{G OWluster}[
(sensor information here)
]

13/28

Dallas Semiconductor

OWBranch

The ‘OWBranch’ provides a physical grouping of 1-Wire devices by creating a ‘branch’. A branch
is separate from the main 1-Wire Network and must be switched on to access. This type of
arrangement is used to provide physical location information and isolation of 1-Wire devices.

Execution Mode:

PRE / POST — The OWBranch action is performed at the beginning and end of the group
during parsing. The data objects must be before the beginning of the group. When first
called that action is to open the switch with the available information. If the 1-Wire TAG is
being used as a script, this information must be saved is some way (branch stack) so that
the branch can be reopened when the end of the group is found.

Required Data objects:

OWNetAddress — The ‘'OWNetAddress’ provides the 1-Wire Network node address for the 1-
Wire device controlling the branch. Each node address is guaranteed to be unique.

AccessMethod — The ‘AccessMethod’ provides the method to read or access the 1-Wire
device. The ‘AccessMethod’ must be known by the application in order to read the
Sensor.

ChannelMask — The ‘ChannelMask’ provides a bit-mask indicating which channels on the 1-
Wire switch need to be set. A ‘1’ in the mask indicates the branch value needs to be set
and a ‘0’ if it does not.

ChannelState — The ‘ChannelState’ provides a bit-mask indicating the desired state of the
channels to open the ‘branch’. Note that bit values outside of the ‘ChannelMask’ will be
ignored. A ‘1’ in the ‘ChannelState’ indicates conducting or closed and a ‘0’ indicates
open.

Optional Data objects:
Description — Text description of the 1-Wire branch.

Example:

Description(16)} Isolation Branch
O/\Net Addr ess(8)} 3000000006BE6912
Channel Mask(1)} 2

Channel State(1)} 2

AccessMet hod(1)} 5

OWBr anch} [

A A A A
MOOU0O0O

(information about devices on branch)

14/28

Dallas Semiconductor

OWSensor

The ‘OWSensor’ is a group describing a device that can be read to provide a numerical value.
The key to reading the sensor described in the ‘OWSensor’ is the ‘AccessMethod’ data object.
The value of this object will instruct the application on what method to use to retrieve this
‘numerical value’.

Execution Mode:

POST — The OWSensor action is performed at the end of the group during parsing. The data
objects must be ‘inside’ the group. Depending on the value of the ‘AccessMethod’ data
object there may be other data objects required.

Required Data objects:

OWNetAddress — The ‘'OWNetAddress’ provides the 1-Wire Network node address for the 1-
Wire device controlling the sensor. Each node address is guaranteed to be unique.

AccessMethod — The ‘AccessMethod’ provides the method to read or access the 1-Wire
device. The ‘AccessMethod’ must be known by the application in order to read the
Sensor.

ChannelMask — The ‘ChannelMask’ provides a bit-mask indicating which channels on the 1-
Wire switch need to be set. A ‘1’ in the mask indicates which channel needs to be set.
This data object is not required for all access methods.

ChannelState — The ‘ChannelState’ provides a bit-mask indicating the desired state of the
channels. Note that bit values outside of the ‘ChannelMask’ will be ignored. A ‘1’ in the
‘ChannelState’ indicates conducting or closed and a ‘0’ indicates open. This data object is
not required for all access methods.

InitState — The ‘InitState’ provides the initialization state for the sensor. The format of this
depends on the ‘AccessMethod'.

Optional Data objects:

Description — Text description of the 1-Wire sensor.

ScaleFactorM — Scale multiplication factor. This data object is optional in some
‘AccessMethods’.

ScaleFactorD — Scale division factor. This data object is optional in some ‘AccessMethods’.

UnitName — Provide a unit name for the results from some ‘AccessMethods’.

Example:

{G OWsensor}|

. Description(10)} Wnd Speed

OM\Net Addr ess(8)} B20000000033CF1D
Uni t Nanme(3)} MPH

Scal eFactorM 2)} 12265

Scal eFactorD(2)} 10000
InitState(1)} OF

AccessMet hod(1)} 3

A A A A A A
000000

15/28

Dallas Semiconductor

OWActuator

The ‘OWActuator’ is a group describing a device that can be set to affect the state of device. The
key to settings the actuator described in the ‘OWActuator’ is the ‘AccessMethod’ data object. The
value of this object will instruct the application on what method to use.

Execution Mode:

POST — The OWActuator action is performed at the end of the group during parsing. The
data objects must be ‘inside’ the group. Depending on the value of the ‘AccessMethod’
data object there may be other data objects required.

Required Data objects:

OWNetAddress — The ‘'OWNetAddress’ provides the 1-Wire Network node address for the 1-
Wire device controlling the actuator. Each node address is guaranteed to be unique.

AccessMethod — The ‘AccessMethod’ provides the method to set the 1-Wire device. The
‘AccessMethod’ must be known by the application in order to read the sensor.

ChannelMask — The ‘ChannelMask’ provides a bit-mask indicating which channels on the 1-
Wire switch need to be set. A ‘1’ in the mask indicates the branch values can be
changed. This data object is not required for all access methods.

ChannelState — The ‘ChannelState’ provides a bit-mask indicating the state to turn ‘on’ the
actuator. Note that bit values outside of the ‘ChannelMask’ will be ignored. A ‘1’ in the
‘ChannelState’ indicates conducting or closed and a ‘0’ indicates open. This data object is
not required for all access methods.

InitState — The ‘InitState’ provides the initialization state for the actuator. The format of this
depends on the ‘AccessMethod'.

Optional Data objects:
Description — Text description of the 1-Wire sensor.

Example:

{G OWActuator}]

: Description(11)} Garage door

O/\Net Addr ess(8)} 3000000006BE6912
Channel Mask(1)} 2

Channel State(1)} 2

AccessMet hod(1)} 5

A A
00000

16/28

Dallas Semiconductor

Data Objects

Description
The ‘Description’ data object is a simple text string to describe the associated group.

Format:
ASCII printable text

Max size in bytes:
255

Example:
{D: Description(22)} 1-Wre Wather Station

OWNetAddress

The ‘OWNetAddress’ data object is binary array containing a valid 1-Wire network address. This
can also go by the following names (ROM Number, ROM ID, Serial Number, Registration
Number).

Format:
Binary array containing a valid 1-Wire Network address.

Max size in bytes:
8 (must be 8 bytes)

Example:
D: OMNet Address(8)} FF000000226B8B10

Manufacturer

The ‘Manufacturer’ data object is a simple text string to describe the manufacturer usually
associated with a 1-Wire cluster group.

Format:
ASCII printable text

Max size in bytes:
255

Example:
‘ {D: Manufacturer(20)} Dallas Seni conduct or

17/28

Dallas Semiconductor

ManufacturerCode

The ‘ManufacturerCode’ data object is a binary array containing bit fields to indicate Manufacturer.
The format for the bit fields has not been set.

Format:
Binary array

Max size in bytes:
8

Example:
\ {D. Manuf act urer Code(4)} 00 00 00 00

Enum

The ‘Enum’ data object is an integer indicating a simple enumeration. This value can be used to
provide a serialization number for manufactured clusters.

Format:
Integer, least significant byte first

Max size in bytes:
4

Example:
{D: Enum(1)} 20

SecondsSincel970

The ‘SecondsSincel970’ data object is an integer indicating the number of seconds since
12:00a.m., January 1, 1970. This can be converted to a Time/Date value. For example, a value
of 936106086 can be converted to a Time/Date of August 31, 1999 at 1:28:06p.m.

Format:
Integer, least significant byte first

Max size in bytes:
4

Example:
{D: SecondsSi ncel970(4)} 936106086

18/28

Dallas Semiconductor

AccessMethod

The ‘AccessMethod’ data object is an integer indicating the method to access a particular branch,
sensor, or actuator. The different ‘AccessMethods’ are described in detail later in this document.

Format:
Integer, least significant byte first

Max size in bytes:
4

Example:
‘{D: AccessMet hod(1)} 1

ChannelMask

The ‘ChannelMask’ data object is an integer that indicates which channels to access for a
particular branch, sensor, or actuator. This integer is a bit-mask where a ‘1’ indicates a channel
to be considered.

Format:
Integer, least significant byte first

Max size in bytes:
4

Example:
\ {D. Channel Mask(1)} 2

ChannelState

The ‘ChannelState’ data object is an integer that indicates the desired state of a device with
multiple channels. Only the channels indicated in the ‘ChannelMask’ will be set with the state
from the ‘ChannelState’. A ‘1’ in the ‘ChannelState’ indicates an ON or conducting state.

Format:
Integer, least significant byte first

Max size in bytes:
4

Example:
{D: Channel State(1)} 2

19/28

Dallas Semiconductor

ScaleFactorM

The ‘ScaleFactorM’ data object is an integer that indicates what to multiply a resulting value by to
get a correctly scaled result.

Format:
Integer, least significant byte first

Max size in bytes:
4

Example:
‘ {D: Scal eFactorM 2)} 12265

ScaleFactorD

The ‘ScaleFactorD’ data object is an integer that indicates what to divide a resulting value by to
get a correctly scaled result.

Format:
Integer, least significant byte first

Max size in bytes:
4

Example:
{D: Scal eFactorD(2)} 10000

UnitName

The ‘UnitName’ data object is a simple text string to describe unit being expressed in the result of
a reading, usually a sensor.

Format:
ASCII printable text

Max size in bytes:
255

Example:
‘{D: Uni t Name(3)} MPH

20/28

Dallas Semiconductor

ClusterNum

The ‘ClusterNum’ data object is binary array containing a unique identifier. This data object is
used to identify the 1-Wire Cluster. It can easily be made unique by using a 1-Wire network
address from the cluster itself. For brevity, the leading zero’s and CRC can be left off. In most
cases this is result in a 4 to 5 byte array.

Format:
Binary array containing a unique identifier

Max size in bytes:
8

Example:
\ {D dusterNun(4)} 22 6B 8B 10

ClusterRev

The ‘Cluster’ data object is an integer that indicates the revision number of a 1-Wire cluster. This
in will prevent any conflicts if there is a new version of the 1-Wire TAG.

Format:
Integer, least significant byte first

Max size in bytes:
4

Example:
{D. ClusterRev(1)} O

InitState

The ‘InitState’ data object is binary array containing initialization data. The contents of this data
object depend on the current group and access method.

Format:
Binary array

Max size in bytes:
255

Example:
‘{DIMt&meuH OF

21/28

Dallas Semiconductor

NetRegistration

The ‘NetRegistration’ data object is a simple text string representing the World-Wide-Web
address for this 1-Wire TAG to go for remote data services.

Format:
ASCII printable text

Max size in bytes:
255

Example:
{D: NetRegistration(14)} ww. 1-Wre. net

22/28

Dallas Semiconductor

Access Methods

The access method designates how to access a sensor, branch, or actuator. The access method
is simply a number that is known by all to represent a specific technique. New access methods
can be added as new sensor types are created. If an older application does know this access
method, it will simply skip that sensor or prompt for more information.

AM_ORDER_ROM_SWITCH_LIST

The ‘AM_ORDER_ROM_SWITCH_LIST’ access method is simply an ordered list of contact
sensors. Contact is made when a 1-Wire device is in contact with the 1-Wire Network. This
access method applies to the ‘OWSensor’ group.

Required Data objects:

InitState — Ordered list of 1-Wire Network addresses. Each 1-Wire Network Address is an 8
byte array. For example if ‘InitStat’ has a length of 16 bytes and a data payload of ‘01 D4
57 00 02 00 00 AE 01 DO 57 00 02 00 00 72’ then there are two ROM contact switches in
this ordered list.

Operation:

1. Start at the beginning of the list of 1-Wire Network Addresses.
2. Check to see if the 1-Wire device is in contact to the 1-Wire Network by doing a targeted
search.

3. Report if device is in contact and it's order number.
4. Go to the next 1-Wire Network Address
5. Check if done with all devices
6. Goto 2.
Result:

Report which of the 1-Wire contacts are ‘on’ and their order number. For example, if the third
and fourth 1-Wire devices were in contact, then the result would be (3,4).

AM_TEMPERATURE_1820

The ‘AM_TEMPERATURE_1820" access method reads the current temperature from a
DS1820/DS1920. This access method applies to the ‘OWSensor’ group.

Required Data objects:
OWNetAddress —1-Wire Network Address of the DS1820 to be read.

Operation:

Verify the DS1820 is present on the 1-Wire Network
Recall the EEPROM calibration

Start a temperature conversion and apply power delivery
Delay 500ms

Read the temperature

agrwONPE

Result:
Report the result temperature reading.

AM_TEMPERATURE_18B20

The ‘AM_TEMPERATURE_18B20’ access method reads the current temperature from a
DS18B20. This access method applies to the ‘OWSensor’ group.

23/28

Dallas Semiconductor

Required Data objects:

OWNetAddress —1-Wire Network Address of the DS1820 to be read.
InitState — Single byte containing the number of bits to be used it the reading the temperature.
Valid values are 9, 10, 11, and 12.

Operation:

Verify the DS1820 is present on the 1-Wire Network

Set the number of bit to used in the conversion

Recall the EEPROM calibration

Start a temperature conversion and apply power delivery
Delay 800ms

Read the temperature

oukrwhpE

Result:
Report the result temperature reading.

AM_COUNT_VELOCITY_2423

The ‘AM_COUNT_VELOCITY_2423' access method calculates a velocity measurement by
reading a DS2423 counter twice with a delay in between. This access method applies to the
‘OWSensor’ group.

Required Data objects:

OWNetAddress —1-Wire Network Address of the DS2423 to be read.
InitState — Single byte containing the page number of the counter to be used for velocity
measurement. Valid values are 12, 13, 14, and 15.

Optional Data objects:

ScaleFactorD — The Count/Second value from the velocity reading is divided by this data
object value. If this data object is not present then a value of ‘1’ is used.

ScaleFactorM — The Count/Second value from the velocity reading is multiplied by this data
object value. If this data object is not present then a value of ‘1’ is used.

UnitName — String that is presented after the resulting scaled velocity value. This string can
be a unit name such as ‘MPH’.

Operation:

Verify the DS2423 is present on the 1-Wire Network

Read the counter associated with the page given in ‘InitState’
Delay 500ms

Read the counter again

Calculate a count per second value

Multiply result by ‘ScaleFactorM’

Divide result by ‘ScaleFactorD’

Present the result with the ‘UnitName’ if present

ONogrWNE

Result:
Report the result velocity reading with optional ‘UnitName’.

AM_COUNT_TOTAL_2423

The ‘AM_COUNT_TOTAL_2423' access method reports a total count measurement by reading a
DS2423 counter. This access method applies to the ‘OWSensor’ group.

Required Data objects:

24/28

Dallas Semiconductor

OWNetAddress —1-Wire Network Address of the DS2423 to be read.
InitState — Single byte containing the page number of the counter to be used for velocity
measurement. Valid values are 12, 13, 14, and 15.

Optional Data objects:

UnitName — String that is presented after the resulting scaled velocity value. This string can
be a unit name such as ‘MPH'.

Operation:

1. Verify the DS2423 is present on the 1-Wire Network
2. Read the counter associated with the page given in ‘InitState’
3. Present the result with the ‘UnitName’ if present

Result:
Report the result count reading with optional ‘UnitName’.

AM_SWITCH_2406

The ‘AM_SWITCH_2406’ access method sets the output latches of a DS2406 to a specified state.
This access method applies to the ‘ ‘OWBranch’ and ‘OW Actuator’ groups.

Required Data objects:

OWNetAddress —1-Wire Network Address of the DS2406.

ChannelMask — Bit mask of channels to operate. Since the DS2406 only has 2 channels, the
only valid values are (in binary) 01 (Channel A only), 10 (Channel B only), 11 (Channel A
and B).

ChannelState — Bit mask of desired state of channels for ‘OWBranch’ or default state for
‘OWActuator’. Note for the state to be set, the corresponding bit must be set in the
‘ChannelMask’. The states are ‘0’ for non-conducting and ‘1’ for conducting.

Operation:

(with OWBranch, PRE execution, or OWActuator on first execution [set default state])

1. Verify the DS2406 is present on the 1-Wire Network

2. Read the current switch state so that when writing the state the non-masked channels
remain the same.

3. Set the switch state specified in ‘ChannelState’ using the ‘ChannelMask’ and the current
state from 2.

4. Return the result of setting

(with OWBranch, POST execution)

1. Verify the DS2406 is present on the 1-Wire Network

2. Read the current switch state so that when writing the state the non-masked channels
remain the same.

3. Set the switch state to non-conducting using the ‘ChannelMask’ and the current state
from 2.

4. Return the result of setting

(with OWActuator, after user has selected desired state on available channel(s))

1. Verify the DS2406 is present on the 1-Wire Network

2. Read the current switch state so that when writing the state the non-masked channels
remain the same.

3. Set the switch state to the what the user selected using the ‘ChannelMask’ and the
current state from 2.

4. Return the result of setting

Result:

25/28

Dallas Semiconductor

Report the result of attempting to set the desired switch state.

AM_LEVEL_2406

The ‘AM_LEVEL_2406’ access method reads the level values from the specified channels of a
DS2406. This access method applies to the ‘OWSensor’ group.

Required Data objects:

OWNetAddress —1-Wire Network Address of the DS2406 to be read.

ChannelMask — Bit mask of channels to read the level. Since the DS2406 only has 2
channels, the only valid values are (in binary) 01 (Channel A only), 10 (Channel B only),
11 (Channel A and B).

Operation:

1. Verify the DS2406 is present on the 1-Wire Network
2. Read the current level state.
3. Return the level state of the channels in ‘ChannelMask’

Result:
Report the level state, HIGH or LOW for each specified channel.

AM_ACTIVITY_2406

The ‘AM_ACTIVITY_2406’ access method reads the activity state from the specified channels of
a DS2406. This access method applies to the ‘OWSensor’ group.

Required Data objects:

OWNetAddress —1-Wire Network Address of the DS2406 to be read.

ChannelMask — Bit mask of channels to read the activity. Since the DS2406 only has 2
channels, the only valid values are (in binary) 01 (Channel A only), 10 (Channel B only),
11 (Channel A and B).

Operation:

1. Verify the DS2406 is present on the 1-Wire Network
2. Read the current activity state.
3. Return the activity state of the channels in ‘ChannelMask’

Result:
Report the activity state, YES or NO for each specified channel.

26/28

Dallas Semiconductor

AM_SWITCH_2409

The ‘AM_SWITCH_2409’ access method sets the output latches of a DS2409 to a specified state.
This access method applies to the ‘ ‘OWBranch’ and ‘OW Actuator’ groups. The main and
auxiliary channels of the DS2409 cannot both be turned on (conducting) at the same time.

Required Data objects:

OWNetAddress —1-Wire Network Address of the DS2409.

ChannelMask — Bit mask of channels to operate. Since the DS2409 only has 2 channels, the
only valid values are (in binary) 01 (Main Channel only), 10 (Auxiliary Channel only), 11
(Main and Auxiliary Channels).

ChannelState — Bit mask of desired state of channels for ‘OWBranch’ or default state for
‘OWActuator’. Note for the state to be set, the corresponding bit must be set in the
‘ChannelMask’. The states are ‘0’ for non-conducting and ‘1’ for conducting.

Operation:

(with OWBranch, PRE execution, or OWActuator on first execution [set default state])

1. Verify the DS2409 is present on the 1-Wire Network

2. Read the current switch state so that when writing the state the non-masked channels
remain the same.

3. Set the switch state specified in ‘ChannelState’ using the ‘ChannelMask’ and the current
state from 2.

4. Return the result of setting

(with OWBranch, POST execution)

1. Verify the DS2409 is present on the 1-Wire Network

2. Read the current switch state so that when writing the state the non-masked channels
remain the same.

3. Set the switch state to non-conducting using the ‘ChannelMask’ and the current state
from 2.

4. Return the result of setting

(with OWActuator, after user has selected desired state on available channel(s))

1. Verify the DS2409 is present on the 1-Wire Network

2. Read the current switch state so that when writing the state the non-masked channels
remain the same.

3. Set the switch state to the what the user selected using the ‘ChannelMask’ and the
current state from 2.

4. Return the result of setting

Result:
Report the result of attempting to set the desired switch state.

27/28

Dallas Semiconductor

AM_LEVEL_2409

The ‘AM_LEVEL_2409’ access method reads the level values from the specified channels of a
DS2409. This access method applies to the ‘OWSensor’ group.

Required Data objects:

OWNetAddress —1-Wire Network Address of the DS2409 to be read.

ChannelMask — Bit mask of channels to read the level. Since the DS2409 only has 2
channels, the only valid values are (in binary) 01 (Main Channel only), 10 (Auxiliary
Channel only), 11 (Main and Auxiliary Channels).

Operation:

1. Verify the DS2409 is present on the 1-Wire Network
2. Read the current level state.
3. Return the level state of the channels in ‘ChannelMask’

Result:
Report the level state, HIGH or LOW for each specified channel.

AM_ACTIVITY_2409

The ‘AM_ACTIVITY_2409' access method reads the activity state from the specified channels of
a DS2409. This access method applies to the ‘OWSensor’ group.

Required Data objects:

OWNetAddress —1-Wire Network Address of the DS2409 to be read.

ChannelMask — Bit mask of channels to read the activity. Since the DS2409 only has 2
channels, the only valid values are (in binary) 01 (Main Channel only), 10 (Auxiliary
Channel only), 11 (Main and Auxiliary Channels).

Operation:

1. Verify the DS2409 is present on the 1-Wire Network
2. Read the current activity state.
3. Return the activity state of the channels in ‘ChannelMask’

Result:
Report the activity state, YES or NO for each specified channel.

28/28

	Table of Contents
	Abstract
	1-Wire TAG Specification
	Basic TAG
	Overview
	Structure
	
	Figure 1. Basic 1-Wire TAG field map
	Table 1. Defined Part ID's (Byte 0 - 3 in Basic 1-Wire TAG)

	Descriptor TAG
	Overview
	
	Table 2. Summary of group objects for Descriptor TAG.
	Table 3. Summary of data objects for Descriptor TAG.
	Figure 2. Sample Descriptor TAG
	Table 4. Summary of Access Methods for 1-Wire Sensors, 1-Wire Actuators, and 1-Wire Branches.
	Figure 3. Sample Descriptor TAG for 1-Wire Weather Station

	Group Objects
	ParseData
	
	Execution Mode:
	Required Data objects:
	Optional Data objects:
	Example:

	OWCluster
	
	Execution Mode:
	Required Data objects:
	Optional Data objects:
	Example:

	OWBranch
	
	Execution Mode:
	Required Data objects:
	Optional Data objects:
	Example:

	OWSensor
	
	Execution Mode:
	Required Data objects:
	Optional Data objects:
	Example:

	OWActuator
	
	Execution Mode:
	Required Data objects:
	Optional Data objects:
	Example:

	Data Objects
	Description
	
	Format:
	Max size in bytes:
	Example:

	OWNetAddress
	
	Format:
	Max size in bytes:
	Example:

	Manufacturer
	
	Format:
	Max size in bytes:
	Example:

	ManufacturerCode
	
	Format:
	Max size in bytes:
	Example:

	Enum
	
	Format:
	Max size in bytes:
	Example:

	SecondsSince1970
	
	Format:
	Max size in bytes:
	Example:

	AccessMethod
	
	Format:
	Max size in bytes:
	Example:

	ChannelMask
	
	Format:
	Max size in bytes:
	Example:

	ChannelState
	
	Format:
	Max size in bytes:
	Example:

	ScaleFactorM
	
	Format:
	Max size in bytes:
	Example:

	ScaleFactorD
	
	Format:
	Max size in bytes:
	Example:

	UnitName
	
	Format:
	Max size in bytes:
	Example:

	ClusterNum
	
	Format:
	Max size in bytes:
	Example:

	ClusterRev
	
	Format:
	Max size in bytes:
	Example:

	InitState
	
	Format:
	Max size in bytes:
	Example:

	NetRegistration
	
	Format:
	Max size in bytes:
	Example:

	Access Methods
	AM_ORDER_ROM_SWITCH_LIST
	
	Required Data objects:
	Operation:
	Result:

	AM_TEMPERATURE_1820
	
	Required Data objects:
	Operation:
	Result:

	AM_TEMPERATURE_18B20
	
	Required Data objects:
	Operation:
	Result:

	AM_COUNT_VELOCITY_2423
	
	Required Data objects:
	Optional Data objects:
	Operation:
	Result:

	AM_COUNT_TOTAL_2423
	
	Required Data objects:
	Optional Data objects:
	Operation:
	Result:

	AM_SWITCH_2406
	
	Required Data objects:
	Operation:
	Result:

	AM_LEVEL_2406
	
	Required Data objects:
	Operation:
	Result:

	AM_ACTIVITY_2406
	
	Required Data objects:
	Operation:
	Result:

	AM_SWITCH_2409
	
	Required Data objects:
	Operation:
	Result:

	AM_LEVEL_2409
	
	Required Data objects:
	Operation:
	Result:

	AM_ACTIVITY_2409
	
	Required Data objects:
	Operation:
	Result:

