File Operations

 TMGetFamilySpec

Transport

 TMProgramBlock

 TMCRC

Network

 TMSearch

Hardware Specific

 TMReadDefaultPort

 TMGetAdapterSpec

**

TMGetFamilySpec

The TMGetFamilySpec API call, copies information about the

current device on the MicroLAN specified by 'session_handle'

into the provided structure EFamily. This information is

common to all devices of the current 'family' type. The

'family' type of an iButton is denoted by the first byte

of the serial ROM number. For example, the family type

of 10 (hex) indicates a DS1920 Temperature iButton.

The information is provided in the form of a structure.

This structure includes the number and size of regular

pages, the number and size of status pages (EPROM only),

maximum communications speed (0-normal speed, 1-overdrive,

2-hyperdrive), the memory type(see full description below)

and a description of the family including part number, alternate

part number and a brief functional description.

short far pascal TMGetFamilySpec(

long session_handle, // session handle for the desired MicroLan

void far *state_buffer, // state buffer provided for the MicroLan

 // session

Specification far *FamSpec // pointer to a structure to hold the part

 // specification

);

typedef struct {

 unsigned short features[32];

 char dscrptn[255];

} Specification;

(This is a packed structure on 1 byte boundaries)

features: An array of shorts that currently contains 3 fields; number of regular

 memory pages, number of status pages and the overdrive capabilities of

 the part (0 - not overdrive capable, 1 - overdrive capable) ie:

 features[0] = regular pages, unsigned least significant byte first

 features[1] = bytes per page in regular memory

 features[2] = status pages, unsigned least significant byte first

 features[3] = bytes per page in status memory

 features[4] = max communication speed (regular = 0, overdrive = 1,

 hyperdrive = 2)

 features[5] = memory type (0 = NOMEM, 1 = NVRAM,

 2 = EPROM1, 3 = EPROM2,

 4 = EPROM3, 5 = EEPROM1,

 6 = MNVRAM, 7 = EEPROM2,

 8 = NVRAM2, 9 = NVRAM3

 *Note: For full description see below

 features[6-31] are left for future expansion

Part Types

0 NOMEM – A part with no user storage space or with non-standard structure. Only TMEX hardware specific functions apply to this type.

1 NVRAM – A part with non-volatile RAM. All TMEX API’s are supported with the exception of the programming API reserved for EPROM parts and TMExtendedReadPage.

2 EPROM1- A part with Electrically Programmable Read Only Memory. Contains an onboard 8-bit CRC data check. All TMEX API’s apply to this type.

3 EPROM2 – A part with Electrically Programmable Read Only Memory. Contains an onboard 16-bit CRC data check. All TMEX API’s apply to this type.

4 EPROM3 – A part with Electrically Programmable Read Only Memory. Contains an onboard 16-bit CRC. EPROM2 and EPROM3 differ only by the location and size of TMEX bitmap, the details of which are abstracted into the driver. All TMEX API’s apply to this type

5 EEPROM1 – Electrically Erasable Programmable Read Only Memory. All TMEX API’s are supported with the exception of the programming API reserved for EPROM parts and TMExtendedReadPage.

6 MNVRAM – A part with read-only non rolling-over page write cycle counters associated with a portion of the non-volatile RAM. Pages with the 101 extension in the TMEX file name can only reside on counter pages, however any other file name can also reside on counter pages. All TMEX API’s are supported with the exception of the programming API reserved for EPROM parts.

7 EEPROM2 - Electrically Erasable Programmable Read Only Memory. On board CRC16 for Write/Read memory. Copy Scratchpad returns an authentication byte. All TMEX API’s are supported with the exception of the programming API reserved for EPROM parts.

8 NVRAM2 - A part with non-volatile RAM. Contains an onboard 16-bit CRC. All TMEX API’s are supported with the exception of the programming API reserved for EPROM parts.

9 NVRAM3 – A part with non-volatile RAM with bit accessible memory. Contains an onboard 16-bit CRC. TMEX hardware specific functions and TMExtendedReadPage apply to this type.

dscrptn: An array of characters that contains 3 fields; part number, alternative

 part number and brief functional description. The fields are delimited

 by commas and the string is null terminated.

 ie: DS1920,DS1820,Temperature iButton with Trips

Return Codes:

 1: SUCCESS

 <0: File Operations Return Codes

DOS:

Prior to function call:

- Upper nibble of AH is MicroLan number.

- Lower nibble of AH is the main function code 0E hex.

- AL is the sub function code 05 hex to indicate the TMGetFamilySpec function.

- ES:BX is a far poiner (Segment:Offset) to the family structure

Call a Network layer TMEX interrupt (60-66 hex) with 'TMEX at the beginning of the ID string. See TMEX DOS Considerations for details.

Upon return from function:

- Carry is set if there is an error in execution.

- If carry is set then AL contains the TMEX File Operations Error Return Code.

- The function was successful if the carry was not set.

**

TMProgramBlock

The TMProgramBlock API call writes a buffer of bytes to an EPROM device

DS1982, DS1985, DS1986 or DS2407. The address of the buffer of bytes to

write 'write_buf', the location (address 'address') and the number of bits

'bits' to program at a time are specified to the function. If the number

of bits to program at a time is not successful then the function will

automatically fall back to a lower value. To expedite future calls to

TMProgramBlock the number of bits per pass is returned. If the function

is forced to fall back to a lower value then use this value on subsequent

calls to the function. Note that the ROM pattern for the desired iButton

must already be in the internal eight-byte buffer before this function is

called. This can be accomplished by direct writing to the internal buffer

using the API call TMRom or by using a network API call TMFirst, TMNext,

TMFirstAlarm or TMNextAlarm. This constraint enables this function to

be multi-drop compatible with other EPROM devices on the MicroLan. It

is the responsibility of the calling program to make sure that there are

no non-EPROM devices on the MicroLan at the time of programming. A

non-EPROM device can be damaged from the programming pulse.

The valid values for the number of bits to program at each pass 'bits'

is 2,4 or 8.

short far pascal TMProgramBlock(

long session_handle, // session handle for the desired MicroLan

void far *state_buffer, // state buffer provided for the MicroLan session

uchar far *write_buf, // address of buffer to program into the device

short length, // length of buffer

short address, // address in (status or regular) memory to write

short far *bits, // pointer to the number of bits

);

Parameters

session_handle

 Specifies the session handle returned from the API function

 TMExtendedStartSession that specifies the desired MicroLan port.

 This parameter is required by most TMEX API functions.

state_buffer

 Specifies a pointer to a memory location that TMEX keeps all of the

 state information for the MicroLans. This parameter is required by

 most TMEX API functions.

write_byte

 Specifies the address of the buffer containing the bytes to write

 to the iButton.

length

 Specifies the length of the buffer to be written, limited to 0xFFF

address

 Specifies the address of the byte to write. This address could

 be in status or regular memory space specified by page_type.

bits

 Specifies a pointer to the number of bits to program at a time.

 Depending on the programming hardware type, multiple bits may not be

 programmed at a time. The valid values for bits is 2, 4 or 8. The

 number of bits is automatically reduced by TMProgramByte until a

 successful program is achieved. This function is most efficient if

 proper program voltage is supplied to write the full 8 bits per program.

Return Codes:

>=0 number of bytes written

<0Transport Return Codes

DOS

Prior to function call:

- Upper nibble of AH is MicroLan number.

- Lower nibble of AH is the main function code 0D hex.

- AL is the sub function code 07 hex to indicate the TMProgramBlock function.

- CX is the address of the byte to write.

- DL and the lower nibble of DH is the length of the buffer to program.

- Upper nibble of DH is the number of bits to program at a time. In Bit 1, Bit 0 (the LSBit) fashion:

00 - 2 bits per program pass

01 - 4 bits per program pass

10 - 8 bits per program pass

Bit 2 is a flag to indicate if the address provided is in the regular data space (0) or is in the status data space (1) of the EPROM.

- ES:BX is a far pointer (Segment:Offset) to a buffer to hold the data to be programmed to the part..

Call a Network layer TMEX interrupt (60-66 hex) with 'DOW' at the beginning of the ID string. See TMEX DOS Considerations for details.

Upon return from function:

- Carry is set if there is an error in execution.

- If carry is set then AL contains the TMEX Transport Error Return Code.

- There may be diagnostic results in DX. See TMEX DOS Considerations for details.

- The 1ower nibble of DH contains the bits per pass that were successful if the carry was not set.

**

TMCRC

long far pascal TMCRC (

short length, // length of the data for CRC

uchar far *buf, // pointer to the buffer of data for CRC

unsigned short seed, // CRC seed

short Type, // Specifies 8-bit or 16-bit CRC

);

Parameters

length

 Specifies length of the data contained in buf to use in the CRC, limited to

 0xFFF

buf

 Specifies a pointer to the data to use in the CRC

seed

 Specifies the seed to be used in the CRC calculation

Type

 Specifies either 8-bit CRC (Type=0) or 16-bit CRC(Type=1)

Return Value

Resultant CRC

DOS

Direct TMEX DOS ISR call (not using TMEXLIB.C API)

Prior to function call:

- Lower nibble of AH is 0A hex.

- AL is the sub function code 08 hex to indicate the TMCRC function

- CX contains the length of the buffer

- DL contains the seed to be used in the CRC

- Lower nibble of DH contains the type, 8-bit(0) or 16-bit(1)

- ES:BX is a far pointer (Segment:Offset) to a buffer for the data to be used in the CRC calculation.

Call a Network layer TMEX interrupt (60-66 hex) with 'DOW' at the beginning of the ID string. See TMEX DOS Considerations for details.

Upon return from function:

- CX is the resultant CRC.

**

TMSearch

short far pascal TMSearch(

long session_handle, // session handle for the desired MicroLan

void far *state_buffer, // state buffer provided for the MicroLan session

short ResetSearch, // resets the search

short PerformReset, // performs touch reset if true

short SrchCmd // search command as defined in the data sheet

);

Parameters

session_handle

 Specifies the session handle returned from the API function

 TMExtendedStartSession that specifies the desired MicroLan port.

 This parameter is required by most TMEX API functions.

state_buffer

 Specifies a pointer to a memory location that TMEX keeps all of the

 state information for the MicroLans. This parameter is required by

 most TMEX API functions.

DOS

Prior to function call:

- Upper nibble of AH is MicroLan number.

- Lower nibble of AH is the main function code 0D hex.

- AL is the sub function code 06 hex to indicate the TMSearch function.

- CL the search command provided in the data sheets.

- The LSBit of CH indicates if a Reset of the search is to be performed. (0- do not perform search reset 1-perform reset). Bit 1 of CH indicates if a touch reset is to be performed (0-do not perform reset, 1-perform reset) The 6 most significant bits of CH are 0.

Call a Network layer TMEX interrupt (60-66 hex) with 'DOW' at the beginning of the ID string. See TMEX DOS Considerations for details.

Upon return from function:

- Carry is set if there is an error in execution.

- If carry is set then AL contains the TMEX Transport Error Return Code.

- There may be diagnostic results in DX. See TMEX DOS Considerations for details.

**

TMReadDefaultPort

Function to read default port number and type from registry(Win95/NT), sytem.ini(Win3.1) or Environment variable (DOS).

IBAPI TMReadDefaultPort(

short far *portnum, //pointer to the port number to be return (0-15 valid)

short far *porttype //pointer to the port type to be returned

);

portnum: Specifies a pointer to default port number to be returned. Value can

 range from 0 to 15.

portttype: Specifies a pointer to the default port type. Value can range between

 0 to 15. Defaults are: 1-9097E, 2-1410E, 5-9097U, the remaining port

 types are left for user defined types

Return Value

1 => Port Was Found

(-2) => PORT_NOT_EXIST – Default Port Not Found.

DOS

Prior to function call:

- Lower nibble of AH is the main function code 0E hex.

- AL is the sub function code 05 hex to indicate the TMReadDefaultPort function.

Call a Network layer TMEX interrupt (60-66 hex) with 'DOW' at the beginning of the ID string. See TMEX DOS Considerations for details.

Upon return from function:

- Carry is set if there is an error in execution.

- If carry is set then AL contains the TMEX Hardware Specific Error Return

Code.

- CH contains the port number.

- CL contains the port type.

**

TMGetAdapterSpec

The TMAdapterSpec API call, copies information about the

current adapter on the MicroLAN specified by 'session_handle'

into the provided structure EFamily.

The information is provided in the form of a structure.

This structure includes overdrive capabilities (0-no overdrive,

overdrive capable), strong pullup capabilities, EPROM

programming capabilities and a description of the family

including part number, alternate part number and a brief

functional description.

short far pascal TMGetAdapterSpec(

long session_handle, // session handle for the desired MicroLan

void far *state_buffer, // state buffer provided for the MicroLan

 // session

Specification far *FamSpec // pointer to a structure to hold the part

 // specification

);

typedef struct {

 short features[10];

 char dscrptn[255];

} Specification;

(This is a packed structure on 1 byte boundaries)

features: An array of shorts that currently contains 3 fields; number of regular

 memory pages, number of status pages and the overdrive capabilities of

 the part (0 - not overdrive capable, 1 - overdrive capable) ie:

 features[0] = overdrive

 features[1] = strong pullup

 features[2] = EPROM programming

 features[3-9] are left for future expansion

dscrptn: An array of characters that contains 3 fields; part number, alternative

 part number and brief functional description. The fields are delimited

 by commas and the string is null terminated.

Return Codes:

 1: SUCCESS

 <0: File Operations Return Codes

DOS:

Prior to function call:

- Upper nibble of AH is MicroLan number.

- Lower nibble of AH is the main function code 0E hex.

- AL is the sub function code 06 hex to indicate the TMGetAdapterSpec function.

- ES:BX is a far pointer (Segment:Offset) to the name of the file to terminate.

Call a Network layer TMEX interrupt (60-66 hex) with 'TMEX at the beginning of the ID string. See TMEX DOS Considerations for details.

Upon return from function:

Upon return from function:

- Carry is set if there is an error in execution.

- If carry is set then AL contains the TMEX Hardware Specific Error Return

 Code.

- The function was successful if the carry was not set.

